M.Sc. Sustainable Energy Futures

Imperial College London


This programme is currently not being updated by a university administrator
please explain...

The information might be incorrect, incomplete or outdated.
We apologise for your inconvenience.

×

Application deadline: 31st March 2014
Tuition fee:
  • £ 10,000 / Year (EEA)
  • £ 26,500 / Year (Non-EEA)
Start date: October  2014, October  2015
Duration full-time: 12 months
Languages:
  • English
Location:
Disciplines:
Delivery mode: On Campus
Educational variant: Full-time

Show more

Your Details
Thank You

Become a StudyPortals member and get access to exclusive information, like scholarships and student reviews, related to your favourite programme!

Please enter your full name.

Something went wrong. Please try again here.

Confirmation e-mail address does not match.

Confirmation e-mail address does not match.

An account with this e-mail already exists. Please log in here.

Are you already a StudyPortals Member?
Find all members only information here

Next

Thank you! Please check your e-mail to activate your account. Once your membership account is activated, you can find all information here.

You can also find alternative Masters here

Description

Advertisement

The MSc in Sustainable Energy Futures aims to develop the next generation of leaders in the energy sector. This postgraduate course provides grounding in the major features of global energy issues, sustainable energy technologies and their interactions with economics, the environment and policy. Taking a quantitative approach to the study of technology and systems, the MSc mainly attracts students from engineering and physical sciences, though not exclusively. It will also appeal to those with some post degree experience wishing to gain a broader, more strategic perspective of energy issues.

Combining the academic and industrial experience of the Faculty of Engineering with the Faculty of Natural Sciences and the Imperial College Business School, the MSc in Sustainable Energy Futures offers a unique multidisciplinary teaching programme. Emphasis is placed on the study of whole systems and sustainability, in order to be directly applicable to the wide ranging and cross-cutting energy problems faced by society. Students will develop the critical evaluation skills, research techniques and quantitative analytical methodologies essential for assessing real-world energy systems.

Course Overview

The MSc in Sustainable Energy Futures is offered as a full-time one year intensive course starting in early October and finishing in late September. It is split over three semesters: Autumn and Spring consist of mandatory taught modules and Summer is dedicated to carrying out a research project.

Modules in the Autumn semester, including Energy Systems Technology, Methods for the Analysis of Energy Systems and Energy Economics and Policy, bring a diverse cohort up to speed on common language and analytical tools. In the Spring semester, students take six specialised modules that are taught as a sequence of intensive, two-week courses. Before embarking on individual research projects in the Summer, students will have chosen their topic and presented an initial literature review in the preceding semesters.

There is opportunity to make use of the interdisciplinary nature of the MSc. Research projects take on at least two supervisors from different departments and throughout the year, students are required to attend un-assessed transferable skills workshops on Personal Effectiveness, Presentation and Communication and a Literature Review course developed exclusively for the MSc in Sustainable Energy Futures.

Contents

Modules: Autumn Term

Core Foundation modules are taught during the autumn term to provide a solid grounding for students from diverse academic backgrounds. Below is an outline of the content covered in each module:

Energy Systems Technology

To convey the fundamentals of modern/future energy systems in terms of their technical properties and economic and environmental impacts. Technologies/systems considered include solar photovoltaic electricity generation, fuel cells and hydrogen for stationary and transport electricity generation and wind power. The module will also consider estimation of energy resources and demands along with the main sources of data and methods for analysis.

Methods for the Analysis of Energy Systems

To provide students with a range of tools for the analysis of energy systems and resources from both technical/capability and environmental impact view points. These will include thermodynamic methods for the analysis of energy systems with conventional thermal power plant and transport cycles used as case studies. Modelling, simulation and optimisation of energy systems (components, networks and supply chains). Multiscale modelling, Sensitivity, uncertainty and risk analysis. Life cycle and scenario analysis. Typical applications for each method and case studies.

Energy Economics and Policy

Energy demand, supply markets and competition. Energy policy principles and local, national and regional examples. National and international regulatory and legal environments. Energy-economics-environmental models of global impact. Cost/Benefit analysis. Private investment decision making. Evaluating future technologies. Policy instruments and market mechanisms for carbon mitigation.

Energy Futures Lab Debating Society/ The Graduate School Courses/ Guest Speakers

This module gives students the opportunity to look beyond the confines of the taught course modules to consider broader aspects of energy and to gain key professional skills. In the debating society students will explore current energy issues and previous debating topics have included for example: the role of industrialised nations in leading the march on climate change; the construction of new nuclear power stations and their role in the UK energy landscape; and whether an individual can influence the use of one technology through their investment in it. The Graduate School courses give students the opportunity to develop key professional skills (such as oral presentation, CV writing etc) that are useful not only during the MSc course but also in securing and succeeding in gainful employment thereafter. In addition, during this module, guest speakers from the leading edge of academia, industry and government are invited to give bespoke lectures exclusively to the MSc in Sustainable Energy Futures students.

Modules: Spring Term

The modules in the spring term are a series of intensive courses lasting two weeks. Each module is taught by experts in that field, from academia, industry and government. Below is the outline of the content covered in each module:

Urban Energy Systems

Urbanisation and growth in energy demand; cities as dynamic systems. Characterising city infrastructures; complex systems and networks. Energy supply, conversion and demands in cities; resource flows and city sustainability. Modelling, analysis and optimisation of cities from an energy systems perspective. Transport modelling; land use interactions and energy demands. Case studies.

Carbon Capture and Clean Fossil Fuels

Role of fossil fuels and key issues, analysis, potential solutions. Scale of carbon emissions and climate change driven targets. Conversion technologies for stationary power generation. Carbon capture and storage; technologies, economics. Transportation and long-term storage options for CO2. Coal based processes. Gas based processes. Cogeneration processes. Fuel cells using fossil-based hydrogen and hydrocarbon feedstocks, combined processes. Oil and gas production. Non-conventional hydrocarbon production. Options for cleaner production. The CO2 lifecycle.

Low Carbon Technologies: Biorenewables (half module)

Introduction to sustainable bioenergy: issues, formulations, analysis, potential solutions. Thermal and bio-conversion processes; biomass supply, demand, technology and sustainability issues; engineering of biomass composition, biorefineries, biofuels; molecular microbiology and metabolic engineering; prospects for improving engineering photosynthetic efficiency. Economics and policy aspects of each technology.

Low Carbon Technologies: Nuclear (half module)

Nuclear fission and its position in the energy mix. Fundamentals of power production by fission. Reactors fundamentals. The fuel cycle. Options for dealing with spent fuels. Nuclear waste management. Safety aspects. Decommissioning. Advanced reactor designs and future prospects. The economics of nuclear energy.

Energy Transmission and Storage

Electrical networks; natural gas networks and future hydrogen networks including the technical opportunities, constraints and economics; Energy demand and supply variation in electrical networks. Electrical energy transmission in a variable environment and congestion management. Power flow control. Balancing supply and demand. Natural gas networks. Technologies and prospects for hydrogen transmission. Energy storage for electrical networks and other forms of energy (gas, electrochemical). Managing energy networks in the face of uncertainty and in distributed generation.

Sustainable Transport

Role of transport in the overall energy picture. Aviation and road transport technologies. Rail related (mass transit) issues (linking with Urban Energy Systems). Aero and vehicle propulsion (including aero engine propulsion models, IC engines, hybrid vehicles, fuel cells for transport applications), infrastructure implications, current and emerging technologies. Role and impact of transport policy.

Entrepreneurship in Renewable Energy

Entrepreneurship in the alternative energy space is critical for its long term success. In this module, we will explore different elements of entrepreneurship from technology commercialisation, product positioning, new market development and financing options among others. The programme will be centred around case discussions, with short assignments to be written on different cases. The cases will draw from both non-energy related areas such as consumer markets or services as well as renewable energy, allowing us to gain a broader understanding of entrepreneurship principles.

Requirements

To obtain maximum benefit from studies at Imperial College all students must have a good command of the English Language. Imperial College therefore requires applicants to have taken an English Language test and achieved an acceptable grade or score before admission can be confirmed.

* English Language Tests For Postgraguate Studies
* English Language Support Programme (for those students who have been accepted)

English Language Requirements

IELTS band: 6.5
TOEFL paper-based test score : 600
TOEFL iBT® test: 90

IMPORTANT NOTE: Since April 2014 the ETS tests (including TOEFL and TOEIC) are no longer accepted for Tier 4 visa applications to the United Kingdom. The university might still accept these tests to admit you to the university, but if you require a Tier 4 visa to enter the UK and begin your degree programme, these tests will not be sufficient to obtain your Visa.

The IELTS test is most widely accepted by universities and is also accepted for Tier 4 visas to the UK- learn more.

Members only information

Scholarships

Please sign in to have access to members only information like related scholarships, student reviews etc. Not a member yet? Create a StudyPortals membership account now!

Reviews

Please sign in to have access to members only information like related scholarships, student reviews etc. Not a member yet? Create a StudyPortals membership account now!

Create a free account now!

  • Save and compare your favourite study programmes
  • Apply for the
    € 1000 scholarship
    awarded by StudyPortals each three months
  • Receive personal updates helping you to find the right study programme for you
Sign up for free or log in

Apply for a € 1,000 Scholarship from StudyPortals now Awarded every three months

more information

Welcome to StudyPortals chat
Thank you
Thank you for your question. We will get back to you soon! The reply will be sent to your account which you can activate via the e-mail you just received. Find more study programmes
More info about studying
abroad?
Chat with us!
More info about studying
abroad? Ask a question to
our study advisors!
Chat with us!
Ask a question to our
study advisors! Click here
anywhere