M.Sc. Sustainable Energy Futures

  • On Campus
  • 12 months
  • GBP271000 Year (Non-EEA)
  • English (Find a course)
Imperial College London | London, United Kingdom
The MSc in Sustainable Energy Futures is a new course which will produce the next generation of graduates equipped with the skills to impact on all facets of the energy sector. This is a unique course in both content and structure and is the first multi-faculty degree of its kind offered in the world.

Description of Sustainable Energy Futures


The MSc in Sustainable Energy Futures aims to develop the next generation of leaders in the energy sector. This postgraduate course provides grounding in the major features of global energy issues, sustainable energy technologies and their interactions with economics, the environment and policy. Taking a quantitative approach to the study of technology and systems, the MSc mainly attracts students from engineering and physical sciences, though not exclusively. It will also appeal to those with some post degree experience wishing to gain a broader, more strategic perspective of energy issues.

Combining the academic and industrial experience of the Faculty of Engineering with the Faculty of Natural Sciences and the Imperial College Business School, the MSc in Sustainable Energy Futures offers a unique multidisciplinary teaching programme. Emphasis is placed on the study of whole systems and sustainability, in order to be directly applicable to the wide ranging and cross-cutting energy problems faced by society. Students will develop the critical evaluation skills, research techniques and quantitative analytical methodologies essential for assessing real-world energy systems.

Course Overview

The MSc in Sustainable Energy Futures is offered as a full-time one year intensive course starting in early October and finishing in late September. It is split over three semesters: Autumn and Spring consist of mandatory taught modules and Summer is dedicated to carrying out a research project.

Modules in the Autumn semester, including Energy Systems Technology, Methods for the Analysis of Energy Systems and Energy Economics and Policy, bring a diverse cohort up to speed on common language and analytical tools. In the Spring semester, students take six specialised modules that are taught as a sequence of intensive, two-week courses. Before embarking on individual research projects in the Summer, students will have chosen their topic and presented an initial literature review in the preceding semesters.

There is opportunity to make use of the interdisciplinary nature of the MSc. Research projects take on at least two supervisors from different departments and throughout the year, students are required to attend un-assessed transferable skills workshops on Personal Effectiveness, Presentation and Communication and a Literature Review course developed exclusively for the MSc in Sustainable Energy Futures.

Detailed Course Facts

Application deadline 31st March
Tuition fee
  • GBP 271000 Year (Non-EEA)
  • GBP 10200 Year (EEA)
Start date October  2016
Credits (ECTS) 90 ECTS
Duration full-time 12 months
Delivery mode On Campus
Educational variant Full-time

Course Content

Modules: Autumn Term

Core Foundation modules are taught during the autumn term to provide a solid grounding for students from diverse academic backgrounds. Below is an outline of the content covered in each module:

Energy Systems Technology

To convey the fundamentals of modern/future energy systems in terms of their technical properties and economic and environmental impacts. Technologies/systems considered include solar photovoltaic electricity generation, fuel cells and hydrogen for stationary and transport electricity generation and wind power. The module will also consider estimation of energy resources and demands along with the main sources of data and methods for analysis.

Methods for the Analysis of Energy Systems

To provide students with a range of tools for the analysis of energy systems and resources from both technical/capability and environmental impact view points. These will include thermodynamic methods for the analysis of energy systems with conventional thermal power plant and transport cycles used as case studies. Modelling, simulation and optimisation of energy systems (components, networks and supply chains). Multiscale modelling, Sensitivity, uncertainty and risk analysis. Life cycle and scenario analysis. Typical applications for each method and case studies.

Energy Economics and Policy

Energy demand, supply markets and competition. Energy policy principles and local, national and regional examples. National and international regulatory and legal environments. Energy-economics-environmental models of global impact. Cost/Benefit analysis. Private investment decision making. Evaluating future technologies. Policy instruments and market mechanisms for carbon mitigation.

Energy Futures Lab Debating Society/ The Graduate School Courses/ Guest Speakers

This module gives students the opportunity to look beyond the confines of the taught course modules to consider broader aspects of energy and to gain key professional skills. In the debating society students will explore current energy issues and previous debating topics have included for example: the role of industrialised nations in leading the march on climate change; the construction of new nuclear power stations and their role in the UK energy landscape; and whether an individual can influence the use of one technology through their investment in it. The Graduate School courses give students the opportunity to develop key professional skills (such as oral presentation, CV writing etc) that are useful not only during the MSc course but also in securing and succeeding in gainful employment thereafter. In addition, during this module, guest speakers from the leading edge of academia, industry and government are invited to give bespoke lectures exclusively to the MSc in Sustainable Energy Futures students.

Modules: Spring Term

The modules in the spring term are a series of intensive courses lasting two weeks. Each module is taught by experts in that field, from academia, industry and government. Below is the outline of the content covered in each module:

Urban Energy Systems

Urbanisation and growth in energy demand; cities as dynamic systems. Characterising city infrastructures; complex systems and networks. Energy supply, conversion and demands in cities; resource flows and city sustainability. Modelling, analysis and optimisation of cities from an energy systems perspective. Transport modelling; land use interactions and energy demands. Case studies.

Carbon Capture and Clean Fossil Fuels

Role of fossil fuels and key issues, analysis, potential solutions. Scale of carbon emissions and climate change driven targets. Conversion technologies for stationary power generation. Carbon capture and storage; technologies, economics. Transportation and long-term storage options for CO2. Coal based processes. Gas based processes. Cogeneration processes. Fuel cells using fossil-based hydrogen and hydrocarbon feedstocks, combined processes. Oil and gas production. Non-conventional hydrocarbon production. Options for cleaner production. The CO2 lifecycle.

Low Carbon Technologies: Biorenewables (half module)

Introduction to sustainable bioenergy: issues, formulations, analysis, potential solutions. Thermal and bio-conversion processes; biomass supply, demand, technology and sustainability issues; engineering of biomass composition, biorefineries, biofuels; molecular microbiology and metabolic engineering; prospects for improving engineering photosynthetic efficiency. Economics and policy aspects of each technology.

Low Carbon Technologies: Nuclear (half module)

Nuclear fission and its position in the energy mix. Fundamentals of power production by fission. Reactors fundamentals. The fuel cycle. Options for dealing with spent fuels. Nuclear waste management. Safety aspects. Decommissioning. Advanced reactor designs and future prospects. The economics of nuclear energy.

Energy Transmission and Storage

Electrical networks; natural gas networks and future hydrogen networks including the technical opportunities, constraints and economics; Energy demand and supply variation in electrical networks. Electrical energy transmission in a variable environment and congestion management. Power flow control. Balancing supply and demand. Natural gas networks. Technologies and prospects for hydrogen transmission. Energy storage for electrical networks and other forms of energy (gas, electrochemical). Managing energy networks in the face of uncertainty and in distributed generation.

Sustainable Transport

Role of transport in the overall energy picture. Aviation and road transport technologies. Rail related (mass transit) issues (linking with Urban Energy Systems). Aero and vehicle propulsion (including aero engine propulsion models, IC engines, hybrid vehicles, fuel cells for transport applications), infrastructure implications, current and emerging technologies. Role and impact of transport policy.

Entrepreneurship in Renewable Energy

Entrepreneurship in the alternative energy space is critical for its long term success. In this module, we will explore different elements of entrepreneurship from technology commercialisation, product positioning, new market development and financing options among others. The programme will be centred around case discussions, with short assignments to be written on different cases. The cases will draw from both non-energy related areas such as consumer markets or services as well as renewable energy, allowing us to gain a broader understanding of entrepreneurship principles.

English Language Requirements

TOEFL paper-based test score (read more)
TOEFL iBT® test (read more)

IMPORTANT NOTE: Per 6 April 2015 only the English language tests from IELTS and Trinity College London are accepted for Tier 4 Visa applications to the United Kingdom. Other tests (including TOEFL, TOEIC, Pearson, City & Guilds) are no longer accepted for Tier 4 visa applications to the United Kingdom. The university might still accept these tests to admit you to the university, but if you require a Tier 4 visa to enter the UK and begin your degree programme, these tests will not be sufficient to obtain your Visa. Since the Trinity College London language tests must be taken in one of their exam centres in the UK, IELTS is now the only language test accepted for Tier 4 visas to the UK that can be taken worldwide.

The IELTS test is most widely accepted by universities and is also accepted for Tier 4 visas to the UK- learn more.

Requirements for Sustainable Energy Futures

To obtain maximum benefit from studies at Imperial College all students must have a good command of the English Language. Imperial College therefore requires applicants to have taken an English Language test and achieved an acceptable grade or score before admission can be confirmed.

  • English Language Tests For Postgraguate Studies
  • English Language Support Programme (for those students who have been accepted)

Work Experience for Sustainable Energy Futures

No work experience is required.

More Information

We Are Helping Thousands of Students to Find a University Abroad!

Fortunately enough I was able to find StudyPortals. Right from the start of the application to getting the confirmation of admission I was using StudyPortals.
Shivprasad - India

Sign up for your personal newsletter and we will help you too.

We will send you all the information you need to find your dream study programme!

The Global Study Awards: get funded with up to £10,000 to study abroad

Together with the ISIC Association and British Council IELTS we offer you the chance to receive up to £10000 to expand your horizon and study abroad. We want to ultimately encourage you to study abroad in order to experience and explore new countries, cultures and languages.

Prepare yourself for Master degree

Find a Preparation Course
  • Reset
Compare Programmes