M.Sc. Molecular Biophysics

  • On Campus
  • 24 months
  • EUR15500 Year (Non-EEA)
  • English (IELTS accepted)
Stockholm University | Stockholm, Sweden
The programme starts with one semester of compulsory courses. Among these there are both theoretically oriented courses, which provide the necessary theoretical background for understanding biophysical principles, as well as more experimental courses, which make the students experienced in advances techniques.

Description of Molecular Biophysics

Advertisement

Stockholm University offers a two years Masters degree programme in Molecular Biophysics. It provides a molecular view on the phenomena of life and a thorough education in experimental and theoretical biophysical methods. The programme starts with one semester of compulsory courses. Among these there are both theoretically oriented courses, which provide the necessary theoretical background for understanding biophysical principles, as well as more experimental courses, which make the students experienced in advances techniques.

All courses are given by professors who perform world-class research. Hands-on laboratory course work and individual research projects are an integrated and essential part of the program. The program allows a high degree of freedom of choice: students can specialize in theoretical or experimental biophysics, or read both lines in parallel. The final degree project given an excellent opportunity to gain research experience, and the project is carried out in one of the affiliated groups at the participating Universities.

The research conducted in the different groups includes both theoretical and experimental aspects of biophysics, including a wide variety of techniques and applications. For more information see the research descriptions at the participating departments. The Masters degree program in Molecular Biophysics is aimed at students from Sweden and abroad with a bachelor degree in chemistry or physics. No knowledge in biology is required. The Masters degree program is organized by the Department of Biochemistry and Biophysics in collaboration with the Department of Physical, Inorganic and Structural Chemistry, both at Stockholm University.

Detailed Course Facts

Application deadline January 15
Tuition fee
  • EUR 15500 Year (Non-EEA)
  • Free (EEA)

Tuition fee, first instalment: 70000 SEK -Total course/programme fee:280000 SEK The following information on tuition fees only concerns citizens outside the EU, EES and Switzerland

Start date September  2015
Credits (ECTS) 120 ECTS
Duration full-time 24 months
Languages
  • English
Take an IELTS test
Delivery mode On Campus
Educational variant Full-time
Intensity Flexible

Course Content

Courses in the Master´s program in Molecular Biophysics

All courses are given in English and most of them as block courses meaning that the student concentrates on one topic at a time. Each block is typically 5 or 10 weeks. A study year has 40 weeks.

First four courses (30 ECTS credits, 20 weeks)

  • Bioinformatics (scroll down the page to see course information)
    Arne Elofsson, KB7004, 7.5 ECTS credits, 5 weeks, Aug-Sept
The amount of available data in life sciences is rapidly increasing, and to use this data in the best possible way is rapidly becoming one of the cornerstones in all biological research. In this course we will cover the basic bioinformatical methods to analyze protein sequence and protein structure. The goals are that after this course you should be able to use state of the art methods to predict the function and structure of an unknown protein sequence.You will learn to use and understand the basic tools in bioinformatics, including tools for: sequence searching, sequence alignments, secondary structure, fold recognition, homology modeling.
  • or Biomolecules and the physical principles of their reactions
    Andreas Barth, KB7006, 7.5 ECTS credits, 5 weeks, Aug-Sept or any other time
The course gives an introduction to biological molecules (water, amino acids, proteins, nucleic acids, DNA, RNA) and biological systems (cells, membranes). Teaching is done in form of lectures and literature seminars. The course also teaches the fundamental chemical and physical principles that underly reactions of biological molecules. These include classical thermodynamics, chemical equilibrium, kinetics of chemical reactions, and molecular orbital theory. The course is a self-study course with provided material.
  • Structural biochemistry (scroll down the page to see course information)
    Martin Högbom, KB7002, 7.5 ECTS credits, 5 weeks, Sept-Oct
The field dealing with protein structure at atomic resolution, structural biochemistry, has had a great impact on our understanding of the details in important processes that occur with high precision in the cell. This course deals with concepts in structural biochemistry, both in terms of understanding the most important protein structures on a molecular level, as well as the most important techniques for determining three-dimensional structure at atomic resolution. The important relationship between structure and function is illustrated with examples of how three-dimensional structures have provided us with molecular details of important reactions in the cell. The two main techniques for determining protein structure at atomic resolution are X-ray crystallography and nuclear magnetic resonance. These two techniques are covered in the course, which also gives an introduction to other important methods, such as electron microscopy.
  • Spectroscopy of biological molecules (scroll down the page to see course information)
    Andreas Barth, KB7007 7.5 ECTS credits, 5 weeks, Oct-Nov
This course gives a thorough background in spectroscopic methods and illustrates their application in the life sciences. Content: UV/vis, Circular dichroism, fluorescence, infrared, Raman, EPR, light and neutron scattering, small angle X-ray diffraction. There is no overlap with the structural biochemistry course
  • Molecular modeling (scroll down the page to see course information)
    Jens Carlsson, KB8005, 7.5 ECTS credits, 5 weeks, Nov-Jan

Modeling of biological systems at the molecular level is becoming increasingly important. In this course we will provide an introduction to methods that are used in molecular modeling. Both quantum mechanical and classical methods will be discussed, including Hartree-Fock, basis sets, semi-empirical methods, density functional theory, molecular mechanics, energy minimization, molecular dynamics simulations, Monte Carlo methods,sequence alignments.

Profile courses (15 - 30 ECTS credits)

Profile courses are subdivided here into experimental and theoretical courses for the sake of clarity. You can choose amongst all of these courses and combine experimental and theoretical courses..

Experimental profile courses

  • Advanced biochemical methods
    Jan Willem deGier, KB8002, 15 ECTS credits, 10 weeks, Aug-Oct
    (for students with biochemistry/chemistry background)
This course introduces you in a comprehensive way to the exciting and rapidly developing field of biochemical and biophysical methods. You will become acquainted with a flurry of state-of-the-art techniques such as DNA and protein arrays, laser spectroscopy, protein over-expression and purification, crystallogenesis, high-resolution NMR, 2D-gel electrophoresis, mass spectrometry, proteomics and structure-based drug design. You will not only gain in-depth knowledge of the different methods, but you will also learn how to combine them to solve complex and challenging biochemical questions.
The course consists of lectures, tutorials, problem solving sessions, project based practicals, student presentations and biotech site visits/demonstrations.
The course is applicable for research focussed students, students oriented towards entering industry, and for students who want and/or need practical working knowledge of novel biochemical methods and advanced problem solving techniques
  • Biomolecular NMR
    Lena Mäler, KB7005, 15 ECTS credits, 10 weeks, Jan-March
The course covers nuclear magnetic resonance (NMR), the chemists' most important spectroscopic tool. We explain the basic principles of NMR experiments, for example those used to determine molecular structure and to make three-dimensional pictures of organs inside the human body. Selected chemical applications are also presented. Laboratory exercises, covering the liquid and the solid-state NMR, are included and we make a study visit at a clinical "NMR-Imaging" facility.
  • NMR in materials chemistry
    Mattias Edén, KZ8005, 7.5 ECTS credits, 5 weeks, Feb-March
  • Structure and dynamics of biological membranes
    Åke Wieslander, KB8001, 15 ECTS credits, 10 weeks, Jan-March
    (for students with biochemistry/chemistry background)
Biological membrane and membrane proteins are central elements in all living organisms. The course topics include the three-dimensional structure and properties of membranes, the structure, function, expression, biogenesis, methods for purification, structural determination and functional studies of membrane proteins, and transport processes across biological membranes. In addition, recent developments within the research area are discussed where the recent advancements in structural determination of membrane proteins have led to understanding of basic mechanisms, e.g. of signal transduction, at the molecular level. The course is closely associated with the research activities at the Department, where several groups are in the frontline at the international level. A number of one-week projects, done within these research groups, provide practical insights into the topics discussed in the lectures.

Theoretical profile courses

  • Computational physics
    Eva Lindroth, FK8002, 15 ECTS credits, 10 weeks, March-June
    (for students with a physics background)
This course will increase the student's ability to write efficient larger codes by using existing program libraries. The course contains sections such as : Solution of linear algebraic equations, Interpolation and extrapolation, Integration of functions, Evaluations of functions, Special functions, Random numbers, Sorting, Root finding and nonlinear sets of equations, Minimization or maximization of functions, Eigenstates, Fourier transform spectral methods, Statistical description of data, Modeling of data, Integration of ordinary differential equations, Two point boundary value problems, Partial differential equations.
  • Protein physics
    Erik Lindahl, KB8011, 7.5 ECTS credits, half speed, 10 weeks, Jan-March
This is an advance level course in collaboration between Stockholm University and KTH that covers structure, self-organization, and function of the biological macromolecules of life - primarily proteins. It will cover biophysical chemistry of proteins folding, Protein structure, Protein Folding and Protein structure prediction.
  • Quantum chemistry
    Michael Odelius, FK7009, 15 ECTS credits, half speed, 20 weeks, Aug-Jan
The goal of the course is to give a deeper knowledge about molecular orbital theory and how to use it. The theories behind the basic quantum chemistry methods are discussed. An important part of the course are computer exercises. They are intended to give a practical knowledge of quantum chemical methods, in particular DFT (density functional theory), and also to give some experience in studying chemical reactions by quantum chemical methods, i.e. how to determine structures, activation energies,solvent effects etc. Furthermore, a review of modern quantum chemical methods and their applications is given.
  • Theoretical organic chemistry
    Fahmi Himo, KO7007, 15 ECTS credits, March-June 2014
Computer simulations are today an indispensable tool in essentially all branches of chemistry. In particular, quantum chemistry has proven very valuable in the fields of organic and organometallic chemistry, where it has had a major impact. The course involves both quantitative and qualitative aspects of quantum chemistry, with focus on applications. Practical computer exercises are an important part of the course contents.

Free-choice courses (15 - 30 ECTS credits)

You can choose any university course, for which you fulfill the requirements.

Requirements for Molecular Biophysics

General requirements for Master's programmes:

- An academic degree (i.e. a Bachelorís degree or the equivalent, at least 180 ECTS.) Stockholm University does accept applicants in their last year of Bachelor's studies. See note below: Previous university records

- Proficiency in English, which must be demonstrated in one of the following ways:

  • IELTS score (Academic) of 6.5 or more (with no section scoring below 5.5)
  • TOEFL score 20 in written test, total score of 90 (internet based)
  • TOEFL score 4,5 in written test, total score of 575 (paperbased)
  • Cambridge/Oxford - Advanced or Proficiency level

TOEFL test scores must be sent directly from Educational Testing Service (ETS), to University Admissions in Sweden (institution code: SWEDEN 3477).

English language test exemptions

Some students may be exempt from submitting formal test evidence. These are:

  • Students who have a Bachelor's degree from a university where English is the only language of instruction, according to the latest edition of International Handbook of Universities.
  • Students who have a Bachelor's degree (a Swedish Kandidatexamen or equivalent academic qualifications) with English as the major subject.
  • Students with a 4-year university degree in Engineering, Science or Technology from India and Pakistan.
  • Students who have 30 HE credits from a Nordic country and the language of instruction of the course/programme/university is English.

Work Experience for Molecular Biophysics

No work experience is required.

More Information

We Are Helping Thousands of Students to Find a University Abroad!

Shivprasad
Fortunately enough I was able to find StudyPortals. Right from the start of the application to getting the confirmation of admission I was using StudyPortals.
Shivprasad - India

Sign up for your personal newsletter and we will help you too.

We will send you all the information you need to find your dream study programme!

Stockholm University, Sweden

Sweden Stockholm University, situated in the capital of Sweden, is a city University enjoying many links with today's society - both from a local and an international perspective. The University is one of the largest in Sweden with about 39,000 students and 1 800 graduate students.